22.7k views
2 votes
Use the fundamental theorem of calculus to evaluate the following definite integral. Integral from 3 to 4 (2 x squared plus 9 )dx∫342x2+9 dx Integral from 3 to 4 (2 x squared plus 9 )dx∫342x2+9 dx

User Pinxue
by
4.9k points

2 Answers

6 votes

Answer:


\int _3^42x^2+9dx=(101)/(3)

Explanation:

The Fundamental Theorem of Calculus says,

Suppose
f(x) is a continuous function on
[a,b] and also suppose that
F(x) is any anti-derivative for


\int_{{\,a}}^{{\,b}}{{f\left( x \right)dx}} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)

Using the above definition, we can evaluate the definite integral
\int\limits^4_3 {2x^2+9} \, dx

First,


\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx


\int _3^42x^2+9dx=\int _3^42x^2dx+\int _3^49dx

Evaluate the integral


\int _3^42x^2dx=2\cdot \int _3^4x^2dx\\\\\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=(x^(a+1))/(a+1),\:\quad \:a\\e -1\\\\2\left[(x^(2+1))/(2+1)\right]^4_3=2\left[(x^3)/(3)\right]^4_3\\\\\mathrm{Compute\:the\:boundaries}:\\\\2((4^3)/(3)-(3^3)/(3)) =2\cdot (37)/(3)= (74)/(3)

and the integral


\int _3^49dx=\left[9x\right]^4_3=9(4)-9(3)=9

Finally, we get that


\int _3^42x^2+9dx=(74)/(3)+9=(101)/(3)

User Vadim Macagon
by
6.1k points
4 votes

Answer:

Theorem of calculus

Explanation:

Take the integral


\int\limits^3_4 (2x^2+9)dx

Integrate the sum term by term and factor out constants


= 2 \int\limits^4_3 x^2 dx + 9 \int\limits^4_3 1 dx

Apply the fundamental theorem of calculus.

The antiderivative of x^2 is x^3/3, while for a constat is x


= (2x^3)/(3) + 9x dx

Evaluate the limits


= (2*((4)^3)/(3)+9*4)-(2*((3)^3)/(3)+9*3)


=(101)/(3)

User Fynn Becker
by
5.9k points