Answer : The value of
for the equilibrium is
![1.0* 10^(-6)](https://img.qammunity.org/2020/formulas/chemistry/college/r2vx1fuijbouxcm3ht5z69hydo6pxb3hh2.png)
Explanation : Given,
Total pressure = 0.200 atm
The balanced equilibrium reaction is,
![La_2(C_2O_4)_3(s)\rightleftharpoons La_2O3(s)+3CO_2(g)+3CO(g)](https://img.qammunity.org/2020/formulas/chemistry/college/bpnz29htefhe598snfvg51iyqha15a65yl.png)
First we have to calculate the partial pressure of
and
.
From the balanced reaction we conclude that,
The moles of
is equal to the moles of
. So,
Total number of moles = 2
Partial pressure of
=
![\frac{\text{Moles of }CO_2}{\text{Total moles}}* \text{Total pressure}=(1)/(2)* 0.2atm=0.1atm](https://img.qammunity.org/2020/formulas/chemistry/college/o0qpgj0hkecj4umk3i04f6kc5f8nk4oupv.png)
and,
Partial pressure of
=
![\frac{\text{Moles of }CO}{\text{Total moles}}* \text{Total pressure}=(1)/(2)* 0.2atm=0.1atm](https://img.qammunity.org/2020/formulas/chemistry/college/jdkozs9n0m53c0gn8tpehg0f8wyisg4dpf.png)
Now we have to calculate the value of equilibrium constant.
The expression of equilibrium constant
for the reaction will be:
![K_p=(p_(CO_2))^3* (p_(CO))^3](https://img.qammunity.org/2020/formulas/chemistry/college/7qrxv78w7g6e6vrbba3qtvdx95cia8u1cj.png)
Now put all the values in this expression, we get :
![K_p=(0.1)^3* (0.1)^3](https://img.qammunity.org/2020/formulas/chemistry/college/54jcn72fmucscna9pxql7zx5vhhqn2dz2q.png)
![K_p=1.0* 10^(-6)](https://img.qammunity.org/2020/formulas/chemistry/college/u7463agx1vgteks8vf7h3u6vrssx0x43fk.png)
Therefore, the value of
for the equilibrium is
![1.0* 10^(-6)](https://img.qammunity.org/2020/formulas/chemistry/college/r2vx1fuijbouxcm3ht5z69hydo6pxb3hh2.png)