Answer:
The required probability is 0.533.
Explanation:
Consider the provided information.
The actual weight of the chocolate has a uniform distribution ranging from 31 to 32.5 ounces.
Let x is the random variable for the actual weight of chocolate.
According to PDF function.
![P(a\leq x\leq b)=\int\limits^b_a {f(x)} \, dx](https://img.qammunity.org/2020/formulas/mathematics/college/jh7ovoypyoycoj9h9ry3b9ojdci8xkmmns.png)
Where
![f(x)=\left\{\begin{matrix}(1)/(b-a) & a<x<b\\ 0 & otherwise \end{matrix}\right.](https://img.qammunity.org/2020/formulas/mathematics/college/zvnqo1c87esj5e5111tyd2ud71p5d03g87.png)
It is given that ranging from 31 to 32.5 ounces.
Substitute a=31 and b=32.5 in above function.
![f(x)=\left\{\begin{matrix}(1)/(32.5-31) & 31<x<32.5\\ 0 & otherwise \end{matrix}\right.](https://img.qammunity.org/2020/formulas/mathematics/college/u6ba5iscu36chsbla503759hqca9alkpnj.png)
![f(x)=\left\{\begin{matrix}(1)/(1.5) & 31<x<32.5\\ 0 & otherwise \end{matrix}\right.](https://img.qammunity.org/2020/formulas/mathematics/college/wuaom3hbqiuiistz440sxzdy0ndhzpjcdv.png)
We need to find the probability that a box weighs less than 31.8 ounces
Now according to PDF:
![P(x<31.8)=\int\limits^(31.8)_(31) {(1)/(1.5) \, dx](https://img.qammunity.org/2020/formulas/mathematics/college/2gyz01midv7kurch496hx6d22ndgf2abre.png)
![P(x<31.8)=(1)/(1.5)[31.8-31]\\P(x<31.8)=(0.8)/(1.5)\\P(x<31.8)=0.533](https://img.qammunity.org/2020/formulas/mathematics/college/m6n9t6to139nads47kjg17osldo121tm14.png)
Hence, the required probability is 0.533.