Answer:
2.90 is the pOH of a 0.175 M aqueous solution of
.
Step-by-step explanation:
The ionization constant of the base =
![K_b=9.0* 10^(-6)](https://img.qammunity.org/2020/formulas/chemistry/college/5d5ws7il6x8lcww13cw7uowdj5ynl5xz10.png)
Concentration of the base present initially,c = 0.175 M
![NX_3(aq)\rightleftharpoons HNX_3+(aq)+OH^-(aq)](https://img.qammunity.org/2020/formulas/chemistry/college/4hj2s07f635k9awyg0uqk7vw8ig2c9si39.png)
c 0 0
c-x x x
The ionization constant of the base is given by an expression:
![K_b=([HNX_3][OH^-])/([NX_3])](https://img.qammunity.org/2020/formulas/chemistry/college/iv5yzxibnm0vmfi8emv1oi05jxlmaxqo13.png)
![9.0* 10^(-6)=(x^2)/(c-x)](https://img.qammunity.org/2020/formulas/chemistry/college/q1lejqe0a3c6vmxpzm2b7n8qnle7c19g95.png)
![9.0* 10^(-6)=(x^2)/(0.175-x)](https://img.qammunity.org/2020/formulas/chemistry/college/n4mu9lb4ecqpvuc4pv2ea07k9hpz0bf8jc.png)
![1.575* 10^(-6)-9.0x* 10^(-6)=x^2](https://img.qammunity.org/2020/formulas/chemistry/college/38dp9x5wx0i0ot2vypydmn1t4v3dem4r0h.png)
On solving:
x = 0.0012505 M
![[HNX_3]=[OH^-]=0.0012505 M](https://img.qammunity.org/2020/formulas/chemistry/college/hnkf3eqmzpxi2b12su0v3xblivi1z6iekf.png)
![pOH=-\log[OH^-]](https://img.qammunity.org/2020/formulas/chemistry/high-school/n477c3o3xy8p6ug3ipfjqh9fd53hdrrjyq.png)
![pOH=-\log[0.0012505 ]=2.90](https://img.qammunity.org/2020/formulas/chemistry/college/i1z6lqddd06v9lpual2395uv94xgq0rktu.png)
2.90 is the pOH of a 0.175 M aqueous solution of
.