The hypotenuse of the triangle is 29.23 cm long
Solution:
Given that In a right triangle, angle A measures
![20^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/z7iop5e386i9vi03xgh1x42yf5ysadeqjv.png)
The side opposite angle A is 10 centimeters long
Let a right triangle ABC having right angled at B
According to question, angle A is
![20^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/z7iop5e386i9vi03xgh1x42yf5ysadeqjv.png)
We know by angle sum property of triangle, the sum of all the angles of the triangle is 180 degree
![\begin{array}{l}{A^(\circ)+B^(\circ)+C^(\circ)=180^(\circ)} \\\\ {20^(\circ)+90^(\circ)+C^(\circ)=180^(\circ)} \\\\ {C^(\circ)=180^(\circ)-110^(\circ)} \\\\ {C^(\circ)=70^(\circ)}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kje8tfwitavbrkqgj186vlixs7cay73n4f.png)
![\text { We know } \sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cs4sjppesjwgdv6yjunwloopbmqxwdsoqj.png)
![\begin{array}{l}{\sin A^(\circ)=(B C) /(A C)} \\\\ {\sin 20^(\circ)=(10) /(A C)} \\\\ {0.342=10 / A C} \\\\ {A C=10 /(0.342)} \\\\ {A C=29.23 \mathrm{cm}}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s36oxlou9of668p1o9vqt1idiyovhecbfv.png)
So, the hypotenuse is 29.23 cm long