Answer: 1168.7N
Step-by-step explanation:
The Normal --- N -m*g + T*cos(θ) = 0...so N = m*g - T*sin(θ) ..
Therefore frictional force f = µ*(m*g - 935*sin(θ))
So the forces in the horizontal are T*cos(θ) - f = 0
935*cos(θ) = µ*(m*g - 936*sin(θ))
rearranging 935*cos(θ) + 935*µ*sin(θ) = µ*m*g
or cos(θ) + µ*sin(θ) = µ*m*g/934
to find the angle for maximum mass take the derivative of mass with respect to θ and set it to 0
So -sin(θ)*dθ + µ*cos(θ)*dθ = µ*g/935*dm
so -sin(θ) + µ*cos(θ) = µ*g/935*dm/dθ = 0
So sin(θ) = µ*cos(θ)...So tan(θ) = µ
Therefore θ = arctan(µ) = arctan(0.33) = 17.45 degrees
Now using cos(θ) + µ*sin(θ) = µ*m*g/935 we solve for m*g = W
W = 935*(cos(θ) + µ*sin(θ))/(µ)
= 935*(cos(17.45) + 0.32*sin(17.5))/(0.32) = 935 *( 0.95 + 0.32 * 0.2999 / 0.32)
= 1168.7 N