Answer:
Simplified base would be 3∛4
Explanation:
Given exponential function,
![f(x)=(1)/(4)(\sqrt[3]{108})^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/ue62pm25ehx0wtezsebswalkxi2fjrf846.png)
Since, in an exponential function

b is called base.
∵ 108 = 2 × 2 × 3 × 3 × 3,
Or 108 = 4 × 3³,
![\implies \sqrt[3]{108} = \sqrt[3]{4* 3^3}](https://img.qammunity.org/2020/formulas/mathematics/high-school/dvmgcp02kdyewl8ovn6crfurxy8zk0d1bl.png)
( Using
)
![\sqrt[3]{108}=\sqrt[3]{4}* (3^3)^(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7acoccxooebru922bs91kv9rlbctm2e8lq.png)
( Using power of power property of exponent )
![\sqrt[3]{108}=3\sqrt[3]{4}](https://img.qammunity.org/2020/formulas/mathematics/high-school/5mkzclkzrab24azx8f0yfimgs3gz1os6c5.png)
Hence, the required simplified base would be 3∛4
i.e. SECOND option is correct.