Answer:
![270.3\ ft](https://img.qammunity.org/2020/formulas/mathematics/high-school/huc5fnc9dtetvbdlk61oy758xk6uai33ln.png)
Explanation:
see the attached figure to better understand the problem
step 1
In the right triangle ADE
Find the value of h1
See the attached figure
h1=AD
![tan(25\°)=(h_1)/(180)](https://img.qammunity.org/2020/formulas/mathematics/high-school/qkduacrppjm4i3xqi54ezjclnrae1amxzf.png)
Solve for h1
![h_1=(180)tan(25\°)\\h_1=83.94\ ft](https://img.qammunity.org/2020/formulas/mathematics/high-school/83fc5jt280ui1dt70rtq93pjjojhe5srnq.png)
step 2
In the right triangle ABC
Find the value of h2
See the attached figure
h2=BC
![tan(46\°)=(h_2)/(180)](https://img.qammunity.org/2020/formulas/mathematics/high-school/o97ie3dzxxvuz4px4qgb1uajhgszwj2fph.png)
Solve for h2
![h_2=(180)tan(46\°)\\h_2=186.40\ ft](https://img.qammunity.org/2020/formulas/mathematics/high-school/anln7zgfoevxit32cmmlytz1qnzfoss5cw.png)
step 3
Find the height of the neighboring building
we know that
The height of the neighboring building is equal to
![h=h_1+h_2](https://img.qammunity.org/2020/formulas/mathematics/high-school/y54pd3oleimfonv47ze2a1bplvmpznv5k3.png)
substitute the values
![h=83.94+186.40=270.34\ ft](https://img.qammunity.org/2020/formulas/mathematics/high-school/s8vw9hfeswj6jrmfs0xak2d3s416x1w0d7.png)
Round to the nearest tenth of a foot
![h=270.3\ ft](https://img.qammunity.org/2020/formulas/mathematics/high-school/94oepxlj1jikgpkblor1r1z4b558wv8x3p.png)