Given:
Sample mean = 65.4
Standard deviation = 1.2
Sample size = 45
Confidence level = 99%
To find:
The confidence interval.
Solution:
The formula for confidence interval is
![CI=\overline{x}\pm z^*(s)/(√(n))](https://img.qammunity.org/2022/formulas/mathematics/college/7icv1nbj144c76h89efnbk6xd3mjfdegax.png)
where,
is sample mean, z* is confidence value, s is standard deviation and n is sample size.
Confidence value or z-value at 99% = 2.58
Putting the given in the above formula, we get
![CI=65.4\pm 2.58* (1.2)/(√(45))](https://img.qammunity.org/2022/formulas/mathematics/college/4xojnyn9p9mcultos3dv7wzpycmesobyf6.png)
![CI=65.4\pm 0.46](https://img.qammunity.org/2022/formulas/mathematics/college/3xi93wf9sudeqc0helrycd6e7knyav2w1r.png)
![CI=65.4-0.46\text{ and }CI=65.4+0.46](https://img.qammunity.org/2022/formulas/mathematics/college/a40q7vws15lcaxlsrix2yasfcz8pdjdzk3.png)
![CI=64.94\text{ and }65.86](https://img.qammunity.org/2022/formulas/mathematics/college/u0dq5i71his9szodno2sanvz7easd88sld.png)
Therefore, the correct option is D.