Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ng1b0frayturcauvihrqe3qtb65llra87c.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Logarithmic Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = (1)/(\sin x^3) \cdot (d)/(dx)[\sin x^3]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/meeckzpi8n3mxcspg6ghm09xfqukpg758m.png)
- Trigonometric Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = (\cos x^3)/(\sin x^3) \cdot (d)/(dx)[x^3]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uccpt2oo87osllue2quscg0b82d68hszg1.png)
- Simplify:
![\displaystyle y' = \cot x^3 \cdot (d)/(dx)[x^3]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v9agqj5r9ebpdzy1mltvipkufsgrrttz6j.png)
- Basic Power Rule:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation