Answer:
0.1864 < p < 0.2215
Step-by-step explanation:
To calculate and construct the 95% confidence interval for the population proportion, it's necessary to use the normal distribution of one sample proportion.
Excel function of normal distribution NORMINV() ---> value of confidence coefficient.
![\\ p = (x)/(n)p = (412)/(2020\\)\\ \\p = 0.204\\\\\\p +/- z_(0.05/2) X \sqrt{(p (1-p))/(n) } </p><p>Excel function:</p><p>NORMINV (0.05/2,0,1)</p><p></p><p>\\\\z_(0.05) = 1.96\\ \\0.204 +/- 1.96 X \sqrt{(0.204 (1-0,204)/(2020) }\\ \\0.1864 < p < 0.2215](https://img.qammunity.org/2020/formulas/physics/college/l3sirb8kfzvc36uym36qk3szzq8xnc4d5v.png)