Answer:
End behavior of a polynomial function depended on the degree and its leading coefficient.
1. If degree is even and leading coefficient is positive then
![p(x)\rightarrow \infty\text{ as }x\rightarrow \infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/qhryj2smlm9qxqlmkf6vzu58i5ewjef9th.png)
![p(x)\rightarrow \infty\text{ as }x\rightarrow -\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/e3n0d703ra5carhqjn05g9m2idu5ga8xzo.png)
2. If degree is even and leading coefficient is negative then
![p(x)\rightarrow -\infty\text{ as }x\rightarrow \infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/llafe4sntyctpypaar43t3zjq6r2q9iecz.png)
![p(x)\rightarrow -\infty\text{ as }x\rightarrow -\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/jsf3v9nh1hk86uxdxfqypulp78tpj556dv.png)
3. If degree is odd and leading coefficient is positive then
![p(x)\rightarrow \infty\text{ as }x\rightarrow \infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/qhryj2smlm9qxqlmkf6vzu58i5ewjef9th.png)
![p(x)\rightarrow -\infty\text{ as }x\rightarrow -\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/jsf3v9nh1hk86uxdxfqypulp78tpj556dv.png)
4. If degree is odd and leading coefficient is negative then
![p(x)\rightarrow -\infty\text{ as }x\rightarrow \infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/llafe4sntyctpypaar43t3zjq6r2q9iecz.png)
![p(x)\rightarrow \infty\text{ as }x\rightarrow -\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/e3n0d703ra5carhqjn05g9m2idu5ga8xzo.png)
(a)
![f(x)=x^4](https://img.qammunity.org/2020/formulas/mathematics/high-school/zca1kek49utu8glk3djj87xeyeilh7u6.png)
Here, degree is even and leading coefficient is positive.
![f(x)\rightarrow \infty\text{ as }x\rightarrow \infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/91s5glvni8x6hwr8yhkxoazwjyr0ggd4ss.png)
![f(x)\rightarrow \infty\text{ as }x\rightarrow -\infty](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i86y406ia4w19py8198jx74479zy8x7koj.png)
(b)
![g(x)=-x^4](https://img.qammunity.org/2020/formulas/mathematics/high-school/nemo6o63prbd979wcbldbeucl8ek20pw6h.png)
Here, degree is even and leading coefficient is negative.
![g(x)\rightarrow -\infty\text{ as }x\rightarrow \infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/uja8pfea66s28u7ffnog76oq8awt98tlzn.png)
![g(x)\rightarrow -\infty\text{ as }x\rightarrow -\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/czf1jn9cqaug3amfm93rpjnaqpcdpni6ky.png)
(c)
![h(x)=x^3](https://img.qammunity.org/2020/formulas/mathematics/high-school/slr6a4ko2jgkjr5b5sci3bg6tp6m4g0r42.png)
Here, degree is odd and leading coefficient is positive.
![h(x)\rightarrow \infty\text{ as }x\rightarrow \infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/cqoe9bzdzzl291ux23a6jkr4ogdgnvfdbs.png)
![h(x)\rightarrow -\infty\text{ as }x\rightarrow -\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/974h7zk095udh2v5sctpm5z57fwjsrd8k8.png)
(d)
![k(x)=-x^3](https://img.qammunity.org/2020/formulas/mathematics/high-school/zti2a537wb73o4jemh522nc14ozixhm7a7.png)
Here, degree is odd and leading coefficient is negative.
![k(x)\rightarrow -\infty\text{ as }x\rightarrow \infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/5rcbqt7ev8xw8pp8fmx1t9c4k45i3nool5.png)
![k(x)\rightarrow \infty\text{ as }x\rightarrow -\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/bnx1j2dnv3xjbcwf10ljo023qt65cpposv.png)