218k views
5 votes
Find the sum of all coefficients in the following binomial expansion.

a. (2u + v)^10
b. (2u − v)^10
c. (2u − 3v)^11
d. (u − 3v)^11
e. (1 + i)^10
f. (1 − i)^10
g. (1 + i)^200
h. (1 + i)^201

User Annisha
by
7.8k points

1 Answer

4 votes

Answer:

We can find the sum of all the coefficients by substituting all the variables in the expansion with one.

a. u=1,v=1

sum=
(2*1+1)^(10)=
3^(10)

b.u=1,v=1

sum=
(2*1-1)^(10)=1

c.u=1,v=1

sum=
(2*1-3*1)^{11=-1

d.u=1,v=1

sum=
(1-3*1)^(11)=-
2^{11

e.i=1

sum=
(1+1)^{10=
2^{10

f.i=1

sum=
(1-1)^{10=0

g.i=1

sum=
(1+1)^{200=
2^{200

h.i=1

sum=
(1+1)^(201)=
2^{201

User Ali Saberi
by
8.0k points

Related questions

asked Aug 3, 2024 226k views
Nakeema asked Aug 3, 2024
by Nakeema
8.7k points
1 answer
1 vote
226k views