Answer:
![\large \boxed{\text{31.8 g CO}_(2)}](https://img.qammunity.org/2020/formulas/chemistry/middle-school/89zwvv9kuzn2meqvp6z9kt4o7b5cly5dkt.png)
Step-by-step explanation:
We are given the masses of two reactants and asked to determine the mass of the product.
This looks like a limiting reactant problem.
1. Assemble the information
We will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.
MM: 114.23 32.00 44.01
2C₈H₁₈ + 25O₂ ⟶ 16CO₂ + 18H₂O
Mass/g: 10.3 69.
2. Calculate the moles of each reactant
![\text{Moles of C$_(8)$H$_(18)$} = \text{10.3 g C$_(8)$H$_(18)$} * \frac{\text{1 mol C$_(8)$H$_(18)$}}{\text{114.23 mol C$_(8)$H$_(18)$}} = \text{0.090 17 mol C$_(8)$H$_(18)$}\\\\\text{Moles of O$_(2)$} = \text{69. g O}_(2) * \frac{\text{1 mol O$_(2)$}}{\text{32.00 g O$_(2)$}} = \text{2.16 mol O$_(2)$}](https://img.qammunity.org/2020/formulas/chemistry/middle-school/p2exkqdwbuhk47g74ox4a9syvzqt6mapdb.png)
3. Calculate the moles of CO₂ from each reactant
![\textbf{From C$_(8)$H$_(18)$:}\\\text{Moles of CO$_(2)$} = \text{0.090 17 mol C$_(8)$H$_(18)$} * \frac{\text{16 mol CO$_(2)$}}{\text{2 mol C$_(8)$H$_(18)$}} = \text{0.7214 mol CO}_(2)\\\\\textbf{From O$_(2)$:}\\\text{Moles of CO$_(2)$} =\text{2.16 molO$_(2)$} * \frac{\text{16 mol CO$_(2)$}}{\text{25 mol O$_(2)$}} = \text{1.38 mol CO$_(2)$}\\\\\text{Octane is the limiting reactant because it gives fewer moles of CO$_(2)$.}](https://img.qammunity.org/2020/formulas/chemistry/middle-school/ftt68n2o2slpias951bdz2iqk44k73ee06.png)
4. Calculate the mass of CO₂
![\text{ Mass of CO$_(2)$} = \text{0.7214 mol CO$_(2)$} * \frac{\text{44.01 g CO$_(2)$}}{\text{1 mol CO$_(2)$}} = \textbf{31.8 g CO}_\mathbf{{2}}\\\\\text{The reaction produces $\large \boxed{\textbf{31.8 g CO}_\mathbf{{2}}}$}](https://img.qammunity.org/2020/formulas/chemistry/middle-school/778y2caqgy0kkse2tlyz6fw3bjphtvkv9w.png)