160k views
3 votes
Show that (2 + √2i)^20+ (2 − √2i)^20is an integer.

User Zhh
by
5.1k points

1 Answer

4 votes

Answer:

Yes, it is, we need to use the Moivre theorem and we get

Explanation:

Hi, first, let´s introduce Moivre theorem to find the nth power of a complex number.


z^(n) =r(Cos(n\alpha )+iSin(n\alpha ))

Where:

r = module of the complex number

n= power

alpha= inclination angle

to find the module of the complex number, we need to use the following formula.


r=\sqrt{a^(2) +b^(2) }

Where:

z= a+bi

a= real part of the coplex number

b=imaginary part of the complex number

Finally, in order to find the angle (alpha), we have to use the following.


\alpha =tan^(-1) ((b)/(a) )

But, using Moivre for a complex number to the 20th power is not very practical, so we are going to assume some things first


z_(1) =(2+√(2) i)


z_(2) =(2-√(2) i)

So, first we are going to find the value of
z_(1) ^(2) and elevate it to the 10th power in order to get
(2+√(2) i)^(20)

First, lets find the module of z1


r_(1) =\sqrt{2^(2) +(√(2) )^(2) }=√(4+2) =√(6)

and its angle is:


\alpha =tan^(-1) ((√(2) )/(2) )=45

we are all set, now let´s find the value of z_{1} ^{2}


z_(1) ^(2) =√(6) (Cos(2*45 )+iSin(2*45 ))


z_(1) ^(2) =√(6) (Cos(90 )+iSin(90 ))}


z_(1) ^(2) =√(6) (0+i(1))


z_(1) ^(2)=√(6) i

Now, let´s find the value of
z_(1) ^(20)


(z_(1) ^(2))^(10) =(√(6) i)^(10) =7,776(i)^(4) (i)^(4) (i)^(2) =7,776(1)(1)(-1)=-7,776

therefore:


(2 + √(2) i)^(20) =-7,776

We do the same for (2 − √2i)^20, this time:


z_(2) =(2-√(2))


r_(2) =\sqrt{2^(2) +(-√(2) )^(2) }=√(4+2) =√(6)

And the angle is


\alpha =tan^(-1) ((-√(2) )/(2) )=-45

Therefore, we get:


z_(2) ^(2) =√(6) (Cos(2*(-45) )+iSin(2*(-45) ))


z_(2) ^(2) =√(6) (Cos(-90 )+iSin(-90 ))


z_(2) ^(2) =√(6) (0+i(-1))


z_(2) ^(2)=-√(6) i

Now, let´s find the value of
z_(2) ^(20)


(z_(2) ^(2))^(10) =(-√(6) i)^(10) =7,776(i)^(4) (i)^(4) (i)^(2) =7,776(1)(1)(-1)=-7,776

therefore:


(2 - √(2) i)^(20) =-7,776

And then, we add them up


(2+√(2) i)^(20)+(2-√(2) i)^(20)=-7,776+(-7,776)=-15,552

So, yes, the result is an integer, -15,552

User Umashankar
by
4.0k points