Answer: 2.3425
Explanation:
As per given , we have
![\mu=80](https://img.qammunity.org/2020/formulas/mathematics/college/uvri1p9wjhjhtlxp09a4cvxisx6psgzn96.png)
n = 20
![\overline{x}=91\\\\ s=21](https://img.qammunity.org/2020/formulas/mathematics/college/zywl93ztbuh8d1yyxu6nmlvvlebsapsgf0.png)
We assume that the population is approximately normally distributed.
Since population standard deviation is unknown , so we use t-test.
Test statistic :
![t=\frac{\overline{x}-\mu}{(\sigma)/(√(n))}](https://img.qammunity.org/2020/formulas/mathematics/college/m5tz3dq51p25pt0zyjyoxpev73yiiy3kdz.png)
![\\\\ t=(91-80)/((21)/(√(20)))=2.342547405\approx2.3425](https://img.qammunity.org/2020/formulas/mathematics/college/vqs8th5dcdoh0s63ojql2knl0g92kmzw62.png)
Hence, the calculated value of test statistic = 2.3425