Answer:
![\displaystyle f(x)=-(1)/(16)(4^x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/8vgl0jhjtqdzoaz1ui0749kbcqs9159cct.png)
Explanation:
We have the function:
![f(x)=-4^(x-2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/mxbbujmvrii5660arm297s3il95drrjxmp.png)
And we want to convert this to the exponential form:
![f(x)=ab^x](https://img.qammunity.org/2022/formulas/mathematics/high-school/zrd2hxg4hplcl3ju3pjif892lwt6onrxsq.png)
First, using the power of a product property, we can rewrite our function as:
![f(x)=-(4^x\cdot4^(-2))](https://img.qammunity.org/2022/formulas/mathematics/high-school/rpw1co3df8zhkcxntyo7xa58j9d6poahxj.png)
By evaluating the second term, we acquire:
![\displaystyle f(x)=-\big(4^x\cdot (1)/(4)^2}\big)=-\big(4^x\cdot (1)/(16)\big)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ae4wgor5sagdhtiog7v1b8l6ywp01l8ewb.png)
So, by rearranging, we acquire:
![\displaystyle f(x)=-(1)/(16)(4^x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/8vgl0jhjtqdzoaz1ui0749kbcqs9159cct.png)
As desired.