Answer:
1 and −1 are the only solutions to the equation x^2 = 1.
Explanation:
We shall proceed as he suggests
![x=a+bi](https://img.qammunity.org/2020/formulas/mathematics/high-school/4b53deklq4e3sddvlrkljk5hydfleaxduv.png)
Given
![x^(2)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/s3sx2qe3bwwseunnn1k6bbv0q77gsw1zwa.png)
substitute a+bi in x, we get
![(a+bi)^(2)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/mq9fvdubxr3ezysvzocu4j8mqtr89me82z.png)
Rewriting the both sides in standard form for a complex number
![(a^(2)-b^(2))+2abi=1+0i](https://img.qammunity.org/2020/formulas/mathematics/high-school/kcm2zh1dpnb36hk0xa523c53leuhpbw0fe.png)
Equating the real parts on each side of the equation, and equating the imaginary parts on each side of the equation.
and
![2ab=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/erst8u5jmlcywpbpomnh2yc67pfb130o7y.png)
So either a=0 or b=0. If a=0 then
![0^(2)-b^(2)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/k51gq0eacuvcnh39yhlq8jqphrsm2ktr3x.png)
. has no real solution.
If b=0 then
![a^(2)-0^(2)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/4hc5o2wxexhllc3yfx1po1kao4c1oo91z7.png)
![a^(2)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/djag06y2ehldneqbdjotbxytank96c98gk.png)
![a^(2)-1^(2)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/hgnhrk9ihqnjc7x7b4r4m4acofe6s0zum5.png)
![(a-1)(a+1)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/3fh4nlj03l1r1k9a5gwtnxb0yjson44ulc.png)
. or
![a=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bl05c3tb5rzcyr1ib2yxcdb8na8knqww0p.png)
Hence proved.