Answer:
![\sqrt{1 + √(3) i}=\pm (1.58+i 0.548)](https://img.qammunity.org/2020/formulas/mathematics/high-school/nsr5qqwmk75ekisdy4g41bsjphhqayl1h8.png)
Explanation:
Given
z = 1 + √3 i
Let
![√(1+\sqrt(3) i)=p+iq](https://img.qammunity.org/2020/formulas/mathematics/high-school/yyyamfwuqoqvtds2n95lkbcot5f1icqzqt.png)
Squaring both sides
![1+\sqrt(3) i=p^2-q^2+2ipq](https://img.qammunity.org/2020/formulas/mathematics/high-school/hmkv7aj5qrxsuv0l2i8zz8di3bh5uez25e.png)
Comparing real and imaginary part
Re(LHS)=Re(RHS)
...........................(1)
comparing Im(LHS)=Im(RHS)
√3=2pq
![q=(√(3))/(2p)](https://img.qammunity.org/2020/formulas/mathematics/high-school/it3muiiyp8kjv0ifufsxrnw5m56qgouksp.png)
Substitute q in equation (1)
![1=p^2-((√(3))/(2p))^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/livo3zjnljctneox0mtnx98upxd7e3eyz9.png)
![p^4-p^2-0.75=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/iuxxnsnhuinlp04mhu0eiwuvw15dp503dp.png)
Let
![x=p^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/9skdekhw65k9xtq93eet7sgc8jnodyx7sz.png)
![x^2-x-0.75=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/3i34nhtd8yuhp2bhgfofodr98o6l434ykm.png)
![x=(1\pm √(1^2+4* 0.75))/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/uso6lqgqglgmsv6v3dbhbnhe0e0u5mmjle.png)
![x=(1\pm 4)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/6pgya5um5m29nphq950mpp8i9wi4ddfkc3.png)
we take only Positive value because
![p^2=x](https://img.qammunity.org/2020/formulas/mathematics/high-school/eah7wc4ihn287j0m50auiqyrmbotixzqk4.png)
x=2.5
![p^2=2.5](https://img.qammunity.org/2020/formulas/mathematics/high-school/4j8fm0mrjwebbrdbzujicp6hy0ttajwtyl.png)
thus
![p=\pm 1.58](https://img.qammunity.org/2020/formulas/mathematics/high-school/z6r5t14wpixz0j0mi6vdr2vdg8724j4b9k.png)
![q=\pm 0.548](https://img.qammunity.org/2020/formulas/mathematics/high-school/etketiqzu54byyjk47iqkkeo27zk9uyybz.png)
thus,
![\sqrt{1 + √(3) i}=\pm (1.58+i 0.548)](https://img.qammunity.org/2020/formulas/mathematics/high-school/nsr5qqwmk75ekisdy4g41bsjphhqayl1h8.png)