152k views
4 votes
Use the method in the Example to find the square roots of 1 + √3i

1 Answer

3 votes

Answer:


\sqrt{1 + √(3) i}=\pm (1.58+i 0.548)

Explanation:

Given

z = 1 + √3 i

Let
√(1+\sqrt(3) i)=p+iq

Squaring both sides


1+\sqrt(3) i=p^2-q^2+2ipq

Comparing real and imaginary part

Re(LHS)=Re(RHS)


1=p^2-q^2...........................(1)

comparing Im(LHS)=Im(RHS)

√3=2pq


q=(√(3))/(2p)

Substitute q in equation (1)


1=p^2-((√(3))/(2p))^2


p^4-p^2-0.75=0

Let
x=p^2


x^2-x-0.75=0


x=(1\pm √(1^2+4* 0.75))/(2)


x=(1\pm 4)/(2)

we take only Positive value because
p^2=x

x=2.5


p^2=2.5

thus
p=\pm 1.58


q=\pm 0.548

thus,


\sqrt{1 + √(3) i}=\pm (1.58+i 0.548)

User Irwinb
by
5.7k points