119k views
1 vote
If x, y, and z are positive consecutive even integers, where x A. 32

B. 6 - 12
C. 6z
D. 122
E. 12z - 6

1 Answer

3 votes

Answer:

If x, y, and z are positive consecutive even integers, where x<y<z, then 6z - 12 is equal to 2x + 2y + 2z. Hence option B is correct

Solution:

Given, x, y, and z are positive consecutive even integers, where x < y < z,

We have to fond which of the given options equals to 2x + 2y + 2z

Now as the x, y, z are consecutive even integers. We can write them as z – 4, z – 2, z

Then, 2x + 2y + 2z = 2(z – 4) + 2(z – 2) + 2z

2x + 2y + 2z = 2z – 8 + 2z – 4 + 2z

2x + 2y + 2z = 6z – 12

Hence, the second option is correct.

User MauroPorras
by
5.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.