Answer:
To maximize the profit, the farmer should plant 30 acres of crop A and 20 acres of crop B
Explanation:
Let
x -----> the number of acres of crop A
50-x ----> the number of acres of crop B
we know that
![10x+5(50-x) \leq 400](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pd8jzssung6owof7sx5xe1pgta30iwa6um.png)
![10x+250-5x \leq 400](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k1syexezafkl0kczrk3drllgnwabhaq4zj.png)
![10x-5x \leq 400-250](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lh1h091tcgonum8m5yeu9cp8wf2w1pvm3t.png)
![5x \leq 150](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wjdaekzcsm0wjyqczguwp2g5x7e5izh132.png)
----> inequality A
The maximum value of x is 30 acres
The profit is equal to
![P=120x+90(50-x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7irg030bdo6xd9px0sogy8vx012gkl9feg.png)
For x=30
Find the value of P
![P=120(30)+90(50-30)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fvcvhe0hwrtbglemkud03i1qccnzpau0wp.png)
![P=120(30)+90(20)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kduxph8hhp60spq7qhh9uxx9eiv5byz3jn.png)
![P=\$5,400](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4sx8q9n177i6ced1mo7xoqlkmju4l6wavm.png)
therefore
To maximize the profit, the farmer should plant 30 acres of crop A and 20 acres of crop B