Answer:
x = 49.84
Explanation:
We are given an equation of unknown x and we have to solve the equation for x.
![2\ln(e\ln5x)-2\ln15 =0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yhf8cqer7ugdxc3eris0502zs7061n3dp5.png)
⇒
![ln(e\ln5x) = \ln15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z0oi2fqvq4yj5dg7e90prso8o0lrvsw9ua.png)
⇒
{Since we know that ln AB =ln A + ln B}
⇒
![\ln \ln 5x = \ln 15 -\ln e](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xx9ty3n9j2iv2k7nxz03z8ma5gpkflgphl.png)
⇒
{Since we know that ln A/B = ln A - ln B}
⇒
![\ln 5x = (15)/(e)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ub9fw9m0f0yylbf6aq4vlqlqe8vx1vhfz7.png)
⇒
![5x = e^{(15)/(e) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hepismkegle5l9qymv925j35hw3i1d5zh6.png)
⇒
{Converting logarithm to exponent form}
⇒ x = 49.84 (Approximate) (Answer)