120k views
1 vote
A) P(Z <-1.26)
b) P(Z > 1.48)
c) P(1.44 < Z<2.79)

User Maxammann
by
7.4k points

1 Answer

2 votes

Answer:

  • a) P (Z < - 1.26) = 0.60383

  • b) P (Z > 1.48) = 0.56944

  • c) P (1.44 < Z < 2.79) = 0.07229

Step-by-step explanation:

You need to use a table with the cumulative normal standard distribution, which shows the areas for different values of Z-scores.

I attached part of the table for the cumulative probability that gives the probability that a statistic is between 0 (the mean) and Z.

a) P (Z < - 1.26)

The table shows the probabilities for positive values of Z. Since the normal distribution is symmetric P (Z < - 1.26) = P (Z > 1.26).

Also, note that you will find the probability for Z ≤ 1.26, so the probability that you want is P (Z > 1.26) = 1 - P(Z ≤ 1.26)

  • From the table: P (Z ≤ 1.26) is 0.39617.

  • Then, P (Z > 1.26) = 1 - 0.39617 = 0.60383.

  • As said, P (Z < - 1.26) = P (Z > 1.26), so it is 0.60383.

b) P (Z > 1.48)

  • P (Z > 1.48) = 1 - P( Z ≤ 1.48)

  • From the table, P (Z < 1.48) = 0.43056

  • P (Z > 1.48) = 1 - 0.43056 = 0.56944

c) P (1.44 < Z < 2.79)

  • P (1.44 < Z < 2.79) = P (Z < 2.79) - P (Z < 1.44)

  • From the table: P (Z < 2.79) = 0.49736, and P (Z < 1.44) = 0.42507

  • P (Z < 2.79) - P( Z < 1.44) = 0.49736 - 0.42507 = 0.07229
A) P(Z <-1.26) b) P(Z > 1.48) c) P(1.44 < Z<2.79)-example-1
User Vrushali Raut
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories