21,674 views
32 votes
32 votes
there are four distinct positive integers $a,b,c,d$ less than $8$ which are invertible modulo $8$. find the remainder when $(abc abd acd bcd)(abcd)^{-1}$ is divided by $8$.

User Csjpeter
by
2.5k points

1 Answer

14 votes
14 votes

These integers are the ones less than and relatively prime to 8, belonging to the set {1, 3, 5, 7}. They happen to be their own inverses (mod 8), since


1\cdot1 \equiv 1 \pmod 8 \implies 1^(-1) \equiv 1 \pmod 8


3\cdot3 \equiv 9 \equiv 1 \pmod 8 \implies 3^(-1) \equiv 3 \pmod 8


5\cdot5 \equiv 25 \equiv 1 \pmod 8 \implies 5^(-1) \equiv 5 \pmod 8


7\cdot7 \equiv 49 \equiv 1 \pmod 8 \implies 7^(-1) \equiv 7 \pmod 8

Without loss of generality, let
\{a,b,c,d\} be these integers, in that order. Then


abc \equiv 15 \equiv 7 \pmod 8


abd \equiv 21 \equiv 5 \pmod 8


acd \equiv 35 \equiv 3 \pmod 8


bcd \equiv 105 \equiv 1 \pmod 8


abcd \equiv 105 \equiv 1 \pmod 8 \implies (abcd)^(-1) \equiv 1 \pmod 8

So, we have


(abc + abd + acd + bcd) (abcd)^(-1) \equiv (7 + 5 + 3 + 1) \cdot 1 \equiv 16 \equiv \boxed{0} \pmod 8

User KBN
by
3.4k points