46.3k views
2 votes
Find the circumference and area of a circle with the diameter AB,
A(-8,4) and B(4,-1)

1 Answer

5 votes


\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ A(\stackrel{x_1}{-8}~,~\stackrel{y_1}{4})\qquad B(\stackrel{x_2}{4}~,~\stackrel{y_2}{-1})\qquad \qquad d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ AB=√([4-(-8)]^2+[-1-4]^2)\implies AB=√((4+8)^2+(-1-4)^2) \\\\\\ AB=√(144+25)\implies AB=√(169)\implies \stackrel{\textit{diameter}}{AB=13}~\hfill \boxed{\stackrel{\textit{radius}}{6.5}} \\\\[-0.35em] ~\dotfill


\bf \textit{circumference of a circle}\\\\ C=2\pi r\qquad \qquad C=2\pi (6.5)\implies C=13\pi \implies C\approx 40.84 \\\\\\ \textit{area of a circle}\\\\ A=\pi r^2\qquad \qquad A=\pi (6.5)^2\implies A=42.25\pi \implies A\approx 132.73

User JDH
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories