220k views
1 vote
write the equation of the line that passes through the vertex of the parabola y=-2x^2+12x-11 and the point (-2,47)

1 Answer

5 votes


\bf \textit{vertex of a vertical parabola, using coefficients} \\\\ y=\stackrel{\stackrel{a}{\downarrow }}{-2}x^2\stackrel{\stackrel{b}{\downarrow }}{+12}x\stackrel{\stackrel{c}{\downarrow }}{-11} \qquad \qquad \left(-\cfrac{ b}{2 a}~~~~ ,~~~~ c-\cfrac{ b^2}{4 a}\right) \\\\\\ \left(-\cfrac{12}{2(-2)}~~,~~-11-\cfrac{12^2}{4(-2)} \right)\implies \left( 3~~,~~-11+\cfrac{144}{8} \right) \\\\\\ (3~~,~~-11+18)\implies (3~~,~~7) \\\\[-0.35em] ~\dotfill


\bf \stackrel{vertex}{(\stackrel{x_1}{3}~,~\stackrel{y_1}{7})}\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{47}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{47}-\stackrel{y1}{7}}}{\underset{run} {\underset{x_2}{-2}-\underset{x_1}{3}}}\implies \cfrac{40}{-5}\implies -8


\bf \begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{7}=\stackrel{m}{-8}(x-\stackrel{x_1}{3}) \\\\\\ y-7=-8x+24\implies y=-8x+31

User Kermit The Frog
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories