Answer:
![\theta \approx 82.34^\circ](https://img.qammunity.org/2022/formulas/mathematics/college/y6ztwrvf8ojgswet3ai1ujm0dq9i8hf3iq.png)
Explanation:
Please refer to the attached diagram. (Apologies if the shading or resolution is a bit off.)
So, we want to find θ.
Since we formed a right triangle, we can use right triangle ratios.
We know the measure of the adjacent side to θ and the hypotenuse.
Therefore, we will use the cosine ratio:
![\displaystyle \cos(\theta)=\frac{\text{adjacent}}{\text{hypotenuse}}](https://img.qammunity.org/2022/formulas/mathematics/college/55v2jk2f8nxyo62ednw4rk8eseumk41grs.png)
The adjacent side is 2 and the hypotenuse is 15. By substitution:
![\displaystyle \cos(\theta)=(2)/(15)](https://img.qammunity.org/2022/formulas/mathematics/college/8qivcolimt488o8aal9849lue78zcy4idf.png)
Now, we will take the inverse cosine of both sides. So:
![\displaystyle \theta=\cos^(-1)\Big((2)/(15)\Big)](https://img.qammunity.org/2022/formulas/mathematics/college/rjz0f0j7s4vtkc9jpy4til5iz8nmm3t60j.png)
Use a calculator. Hence:
![\theta \approx 82.34^\circ](https://img.qammunity.org/2022/formulas/mathematics/college/y6ztwrvf8ojgswet3ai1ujm0dq9i8hf3iq.png)
The angle between the ground and the ladder is about 82.34°.