Answer:
![P=8+2√(10)+6√(2)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/apqlyz666uyxjx3df7row07yzi69tl2nv4.png)
![A=24\ un^2.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ad6lvh1tluxyuktax0kgtk74wp4ejmzjp1.png)
Explanation:
Plot the vertices of the triangle ABC on the coordinate plane and find the sides AB, BC and AC lengths:
![AB=√((-2-6)^2+(2-2)^2)=√((-8)^2+0^2)=√(64+0)=8\\ \\AC=√((-2-0)^2+(2-8)^2)=√((-2)^2+(-6)^2)=√(4+36)=2√(10)\\ \\BC=√((6-0)^2+(2-8)^2)=√(6^2+(-6)^2)=√(36+36)=6√(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r5oquvrrpctebwdif4ce230ruw11cb08ok.png)
So, the perimeter of the triangle ABC is
![P=8+2√(10)+6√(2)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/apqlyz666uyxjx3df7row07yzi69tl2nv4.png)
To find the area of the triangle, use the formula
![A=(1)/(2)\cdot \text{Base}\cdot \text{Height}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7bjig7iy4lt3hcedxps0846qo8hoso9un1.png)
In your case, AB is the base and the height is 6 units long (see attached diagram). Therefore,
![A=(1)/(2)\cdot 8\cdot 6=24\ un^2.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3ap4a3tlcg7hkp05rda9kpzqoetdv6yx0b.png)