Answer:
Angles are either 55° or 125°.
Explanation:
See the attached diagram.
Let aa' and bb' are two parallel straight lines and cc' is a transversal that meets aa' at o and bb' at o' points.
Now, ∠coa' + ∠coa =180° ..... (1)
Assume by the condition given ∠coa' = x and ∠coa = x+70
Hence, from equation (1), 2x + 70 = 180
⇒ x = 55°
Then ∠coa' =55° and ∠coa = 70+55 = 125°
So, ∠o'oa' = 125° as ∠coa = ∠ o'oa' {Opposite angles}
Again, ∠aoo' = 55° as ∠coa' = ∠aoo' {Opposite angles}
Now, ∠coa' = ∠oo'b' {Corresponding angles} = 55°
and ∠bo'c' = ∠oo'b' = 55° {Opposite angles}
Again ∠oo'b = ∠coa = 125° {Corresponding angles}
and ∠b'o'c' = ∠oo'b =125° {Opposite angles}
(Answer)