Answer:
2 widgets A, 5 widgets B and 2 widgets C
Explanation:
Let
- x be the number of widgets A;
- y be the number of widgets B;
- z be the number of widgets C.
1. On a given day, the company was able to produce 9 total widgets, then
![x+y+z=9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zac2pjvpmyhy5ikcuz0epyem579lwvg3a5.png)
2. The company produces one more Widget B than the sum of the Widgets A & C, then
![y=x+z+1\\ \\x-y+z=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/welvppe1wno97l5etg9wrwc04ikqyl6rkj.png)
3. Widget A costs $3 to produce, so x widgets A cost $3x.
Widget B costs $2 to produce, so y widgets B cost $2y.
Widget C costs $1 to produce, so z widgets C cost $z.
The cost to produce the widgets each day is $18, thus
![3x+2y+z=18](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zu8i1gusprg9g0liyvydspcqjwjih4povc.png)
4. We get the system of three equations:
![\left\{\begin{array}{l}x+y+z=9\\x-y+z=-1\\3x+2y+z=18\end{array}\right.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zjirkqw1zschy2qq1jtszl0y17wk9wkl2w.png)
Write an augmented matrix for this system
![\left(\begin{array}{ccccc}1&1&1&|&9\\1&-1&1&|&-1\\3&2&1&|&18\end{array}\right)\sim \left(\begin{array}{ccccc}1&1&1&|&9\\0&2&0&|&10\\0&1&2&|&9\end{array}\right)\sim \left(\begin{array}{ccccc}1&1&1&|&9\\0&2&0&|&10\\0&0&4&|&8\end{array}\right)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4fb8xq9yzgx0xk0j1p3s6024o3o9w5l00y.png)
Therefore,
![\left\{\begin{array}{l}x+y+z=9\\2y=10\\4z=8\end{array}\right.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/feffhjb52fcpe65qrekxzuu36i5m91jtdu.png)
Hence
![\left\{\begin{array}{l}x=2\\y=5\\z=2\end{array}\right.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xawgxzgk9tfs749xrt896jcjz4w4skng2d.png)