Answer:
We have that
v and
![u=k_1v_1+\cdots k_rv_r](https://img.qammunity.org/2020/formulas/mathematics/college/xdsogex5xsw0z5kl4iy5bwx19goumvrt9x.png)
matching these two expression,
![c_1v_1+\cdots+c_rv_r=k_1v_1+\cdots k_rv_r\\(c_1-k_1)v_1+\cdots+(c_r-k_r)v_r=0](https://img.qammunity.org/2020/formulas/mathematics/college/pl3pct4savrllk388nn3n0skisgi4rmlrw.png)
The last expression show the zero vector as linear combination of the vectors of the basis. But this vectors are linear independent, then the coefficients of the linear combination must be zero. That is,
![c_1-k_1=0, c_2-k_2=0, \cdots , c_r-k_r=0](https://img.qammunity.org/2020/formulas/mathematics/college/pmm5t5mavmb44ofeh8mgxysgcgm322bmte.png)
This implies that
![c_1=k_1, c_2=k_2,\cdots, c_r=k_r.](https://img.qammunity.org/2020/formulas/mathematics/college/4r2fg17m751z6r2b537gvhpme3p7ixw0lc.png)