Answer:
(a)
![p = 1.002x10^(-20)Kg.m/s](https://img.qammunity.org/2020/formulas/physics/high-school/qowsflvn3cykinp770z8hy18rb0ehmcn8l.png)
(b)
![p = 0.598Kg.m/s](https://img.qammunity.org/2020/formulas/physics/high-school/8nfj9wgrzkyu8uk8od198bjt6nlxwuxrhg.png)
(c)
![p = 94.4Kg.m/s](https://img.qammunity.org/2020/formulas/physics/high-school/ll2lx5sss7zp44vbj501i03e5y2wmg4gia.png)
(d)
![p = 1.77x10^(29)Kg.m/s](https://img.qammunity.org/2020/formulas/physics/high-school/upkp3qtrd75nd76w3g76us8i58sbs8b8c9.png)
Step-by-step explanation:
The linear momentum is defined as:
(1)
Where m is the mass and v is the velocity
a.) A proton with mass
moving with a velocity of
.
Replacing those values in equation (1) it is gotten:
![p = (1.67x10^(-27)Kg)(6x10^(6)m/s)](https://img.qammunity.org/2020/formulas/physics/high-school/teh6z6n4fg2fo1ua28yqo7pi5svpij8vq5.png)
![p = 1.002x10^(-20)Kg.m/s](https://img.qammunity.org/2020/formulas/physics/high-school/qowsflvn3cykinp770z8hy18rb0ehmcn8l.png)
So, it has a linear momentum of
![1.002x10^(-20)Kg.m/s](https://img.qammunity.org/2020/formulas/physics/high-school/gy9trdipf3ngl83rvnr1idi5x1yd7fhdgs.png)
b.) A 1.6 g bullet moving with a speed of 374m/s to the right.
Notice that in this case it is necessary to express the mass of the bullet in terms of kilograms:
⇒
![1.6x10^(-3)Kg](https://img.qammunity.org/2020/formulas/physics/high-school/4pmd8ur9vvhi4r3ox1v7hbkyhq53s7wa8g.png)
![m = 1.6x10^(-3)Kg](https://img.qammunity.org/2020/formulas/physics/high-school/nvsyexgpcwobenb67asy3dwdz4x928lk68.png)
![p = (1.6x10^(-3)Kg)(374m/s)](https://img.qammunity.org/2020/formulas/physics/high-school/ww7ogz05b8dkh7ah4fki065bafgpb6vcww.png)
![p = 0.598Kg.m/s](https://img.qammunity.org/2020/formulas/physics/high-school/8nfj9wgrzkyu8uk8od198bjt6nlxwuxrhg.png)
c.) A 8 kg sprinter running with a velocity of 11.8 m/s.
![p = (8Kg)(11.8m/s)](https://img.qammunity.org/2020/formulas/physics/high-school/4np4q2svilcv2ft9d3bf7vzo1haqaea5cc.png)
![p = 94.4Kg.m/s](https://img.qammunity.org/2020/formulas/physics/high-school/ll2lx5sss7zp44vbj501i03e5y2wmg4gia.png)
d.) Earth (
) moving with an orbital speed equal to 29700 m/s.
![p = (5.98x10^(24)Kg)(29700m/s)](https://img.qammunity.org/2020/formulas/physics/high-school/o37l8qzkvtu7w8hqn4jqb0om95b1x376b9.png)
![p = 1.77x10^(29)Kg.m/s](https://img.qammunity.org/2020/formulas/physics/high-school/upkp3qtrd75nd76w3g76us8i58sbs8b8c9.png)