201k views
24 votes
Find the derivative of y = sin(ln(5x2 − 2x))

1 Answer

10 votes

Answer:


y = \cos[\ln x + \ln (5\cdot x - 2)]\cdot \left((1)/(x) + (5)/(5\cdot x-2) \right)

Step-by-step explanation:

Let
y = \sin[\ln(5\cdot x^(2)-2\cdot x)] and we proceed to find the derivative by the following steps:

1)
y = \sin[\ln(5\cdot x^(2)-2\cdot x)] Given

2)
y = \sin [\ln[x\cdot (5\cdot x - 2)]] Distributive property

3)
y = \sin[\ln x + \ln (5\cdot x - 2 )]
\ln (a\cdot b) = \ln a + \ln b

4)
y = \cos[\ln x + \ln (5\cdot x - 2)]\cdot \left((1)/(x) + (5)/(5\cdot x-2) \right)
(d)/(dx) (\sin x) = \cos x/
(d)/(dx)(\ln x) = (1)/(x)/
(d)/(dx)(c\cdot x^(n)) = n\cdot c\cdot x^(n-1)/Rule of chain/Result

User Coldblackice
by
5.3k points