47.0k views
1 vote
100pts: How would you use the limit definition of a derivative to differentiate 6x + 6x^2?

User Joe Doe
by
8.3k points

2 Answers

1 vote


\bf \stackrel{\textit{limit de}\textit{finition of a derivative}}{\lim\limits_(h\to 0)~\cfrac{f(x+h)-f(x)}{h}} \\\\[-0.35em] ~\dotfill\\\\ f(x) = 6x + 6x^2\qquad \qquad \lim\limits_(h\to 0)~\cfrac{[6(x+h)+6(x+h)^2]~~-~~[6x+6x^2]}{h} \\\\\\ \lim\limits_(h\to 0)~\cfrac{[6x+6h+6(x^2+2xh+h^2)]~~-~~[6x+6x^2]}{h} \\\\\\ \lim\limits_(h\to 0)~\cfrac{[6x+6h+6x^2+12xh+6h^2]~~-~~[6x+6x^2]}{h}


\bf \lim\limits_(h\to 0)~\cfrac{[~~\begin{matrix} 6x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~+6h~~\begin{matrix} +6x^2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~+12xh+6h^2]~~~~\begin{matrix} -6x-6x^2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{h}


\bf \lim\limits_(h\to 0)~\cfrac{6h+12xh+6h^2}{h}\implies \lim\limits_(h\to 0)~\cfrac{6~~\begin{matrix} h \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ (1+2x+h)}{~~\begin{matrix} h \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ } \\\\\\ \lim\limits_(h\to 0)~6(1+2x+0)\implies 6+12x

User Aqwert
by
8.0k points
1 vote
Use a calculator ok you will probably get the answer
User Fabian Stolz
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories