Answer:
We conclude that
![3x-11>7x+9\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x<-5\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:-5\right)\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/college/18grp9bo0vlpid3pck9j96o71vl5xo4nr8.png)
Please check the attached diagram which shows the solution on the number line.
Explanation:
Given the inequality
![3x-11>7x+9](https://img.qammunity.org/2022/formulas/mathematics/college/tr9w4sni3f6ag0ye83fz4tbsptynrecbxf.png)
Add 11 to both sides
![3x-11+11>7x+9+11](https://img.qammunity.org/2022/formulas/mathematics/college/ron988ip9513vke1c99jdhvrscxbmh54vj.png)
Simplify
![3x>7x+20](https://img.qammunity.org/2022/formulas/mathematics/college/wqdrun1rv4kop4ggsay8a7fxbb6h0ec7x1.png)
Subtract 7 from both sides
![3x-7x>7x+20-7x](https://img.qammunity.org/2022/formulas/mathematics/college/qd14l6tq30eciup4xm33mpcuxzm6euyvym.png)
Simplify
![-4x>20](https://img.qammunity.org/2022/formulas/mathematics/college/tmzgexynbxl05x8ra6166vml1iifi1pj4o.png)
Multiply both sides by -1 (reverses the inequality)
![\left(-4x\right)\left(-1\right)<20\left(-1\right)](https://img.qammunity.org/2022/formulas/mathematics/college/vxs7f5me59dvs3yz2siuhrkukk9atgldzz.png)
Simplify
![4x<-20](https://img.qammunity.org/2022/formulas/mathematics/college/we0u2jvuyxtc3syfzr0u1tod1g77zmo6f5.png)
Divide both sides by 4
![(4x)/(4)<(-20)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/qvndwvn7etknwvs4c4eddrzbquy487mdt6.png)
Simplify
![x<-5](https://img.qammunity.org/2022/formulas/mathematics/college/49mrcpu3cdq6tvonboh8eriz59ptkmyien.png)
Therefore, we conclude that
![3x-11>7x+9\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x<-5\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:-5\right)\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/college/18grp9bo0vlpid3pck9j96o71vl5xo4nr8.png)
Please check the attached diagram which shows the solution on the number line.