164k views
25 votes
Evaluate


π

π
cos
2
(
5
x
)
d
x
.

1 Answer

11 votes

Answer:


_( - \pi) \int ^(\pi) \cos(2(5x) dx = _( - \pi) \int ^(\pi) \cos(10x) dx \\ let \: 10x \: be \: u \\ (d(10x))/(dx) = du \\ dx = (du)/(10) \\ignore \: limits \\ _( - \pi) \int ^(\pi) \cos(2(5x) dx = \int \cos(u) (du)/(10) \\ = (1)/(10) \sin(u) + c \\ substitute \: for \: u \\ = (1)/(10) \sin(10x) |^(\pi) _( - \pi) \\ = (1)/(10) (( \sin(10\pi) - ( \sin( -10 \pi) ) \\

User FraZer
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories