153k views
2 votes
Consider the function f(x)=
√(x+2)-6 for the domain [-2,∞)

Find
f^(-1)(x), where
f^(-1) is the inverse of
f.
Also state the domain of
f^(-1) in interval notation.

User Mpersico
by
5.8k points

1 Answer

1 vote

Answer:

  • f^-1(x) = (x+6)^2 -2
  • domain: [-6, ∞)

Explanation:

To find the inverse function of f(x), we solve for y the equation ...

x = f(y)

x = √(y+2) -6

x +6 = √(y +2)

(x +6)^2 = y + 2

(x +6)^2 -2 = y

The inverse function is ...


f^(-1)(x)=(x+6)^2-2

The domain of f^-1 is the range of the function f(x): [-6, ∞).

Consider the function f(x)=√(x+2)-6 for the domain [-2,∞) Find f^(-1)(x), where f-example-1
User Microbob
by
4.8k points