Answer:
E(volume) = 98,360
V(Volume) = 12,150,709
Step-by-step explanation:
The Expected value and Variance have the following properties:
E(aX)=aE(X)
E(X+Y)) = E(X) + E(Y)
V(aX) =
V(X)
V(X + Y) = V(X) + V(Y)
Where X and Y are independent variables and a is constant.
So, The expected value of the total volume is:
E(Volume) = E(27X1 + 125X2 + 512X3)
E(Volume) = E(27X1) + E(125X2) +E(512X3)
E(Volume) = 27E(X1) + 125E(X2) +512E(X3)
E(Volume) = 27μ1 + 125μ2 + 512μ3
E(Volume) = 27(210) + 125(250) + 512(120)
E(Volume) = 98,360
At the same way the variance of the total volume is:
V(Volume) = V(27X1 + 125X2 + 512X3)
V(Volume) = V(27X1) + V(125X2) +V(512X3)
![V(Volume)=(27^(2))V(X1)+(125^(2))V(X2)+(512^(2))V(X3)](https://img.qammunity.org/2020/formulas/physics/college/j2xczl76snhkpujw2ehxq6sukp8py71ork.png)
V(Volume) = 729V(X1) + 15,625V(X2) + 262,144V(X3)
V(Volume) = 729(σ1)^2 + 15,625(σ2)^2 + 262,144(σ3)^2
V(Volume) = 729(10)^2 + 15,625(13)^2 + 262,144(6)^2
V(Volume) = 729(100) + 15,625(169) + 262,144(36)
V(Volume) = 12,150,709