Answer:
Explanation:
We have to find the domain and range of each function.
a.
![f(x)=2x+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/2jvyecatnicz0de6r1nqgoe3pqffse0xw8.png)
It is a linear function because the degree of function is 1.Linear function is defined for all real values of x.
Therefore, the domain of given function=R
When we substitute real values in the given function then we get again real values.
Therefore, range of f=R
b.
![f(x)=2x](https://img.qammunity.org/2020/formulas/mathematics/high-school/jgmlnipxlchf1mo9je6ge6xdmve8bj5o6v.png)
It is a linear function .
Domain=R
Range=R
c.
![C(x)=9x+130](https://img.qammunity.org/2020/formulas/mathematics/high-school/b5oa25x9aubpnivm2r6l19wijj3ht5xnin.png)
C(x)=Number of calories in a sandwich containing x grams of fat.
x=Mass of fat
Mass is always a natural number.
Domain of C=N
Substitute x=1
C(1)=9(1)+130=139
C(2)=9(2)+130=18+130=148
Range of C={139,148,157,...}
d.
![B(x)=100(2)^x](https://img.qammunity.org/2020/formulas/mathematics/high-school/trti62n1i7r3xcimvkuxms0ieh9mzs0bd0.png)
B(x)=Number of bacteria
x=Time in hours
Number of bacteria is a natural number and time is always a whole number.
Domain=W
Substitute x=0
![B(0)=100(2)^0=100](https://img.qammunity.org/2020/formulas/mathematics/high-school/9bryeilgdwiqe3z76c3jqpyrtvwpfuo3tf.png)
![B(1)=100(2)^1=200](https://img.qammunity.org/2020/formulas/mathematics/high-school/znrvzb167so0divqf11xhia4srlgpfgzhf.png)
![B(2)=100(2)^2=400](https://img.qammunity.org/2020/formulas/mathematics/high-school/6oau7o9ozzlfgl64dyu0fcpd2u1elf490f.png)
Range of B={100,200,200,800,...}