Answer:
Range of f={-4,-3,0,5,12,21,32,...}
Explanation:
We are given that a function
![f(x)=x^2-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gvlcn1e9tvcmmlm8pmd42725iccmmuuceg.png)
We have to find the range of f.
Substitute x=2 then we get
![f(2)=(2)^2-4](https://img.qammunity.org/2020/formulas/mathematics/high-school/rohfcb4ewh0zi1drfisxvmpoxt9achzfcl.png)
![f(2)=4-4=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/gn16yu4ih0yuigcrxqroxw45mlgsammg8k.png)
When we substitute x=0 then we get
![f(0)=(0)^2-4=0-4=-4](https://img.qammunity.org/2020/formulas/mathematics/high-school/66rwnftz7b772qvfpxinyfuw5ygbon45sx.png)
When we substitute x=1
![f(1)=1-4=-3](https://img.qammunity.org/2020/formulas/mathematics/high-school/393ow0gun2abet7u0vgfo3wzpol4skgchj.png)
When x=3
![f(3)=(3)^2-4=9-4=5](https://img.qammunity.org/2020/formulas/mathematics/high-school/aq659gootuk4d7zlyqorljuc72afefjkkw.png)
Therefore, the range of f={-4,-3,0,5,12,21,32,...}