a. In order for
to be a PDF,
needs to be non-negative (it is) and the integral over its support must evaluate to 1.
is symmetric about
, i.e. even, so
![\displaystyle\int_(-\infty)^\infty\frac\lambda2e^(-\lambda|x|)\,\mathrm dx=\lambda\int_0^\infty e^(-\lambda x)\,\mathrm dx=-e^(-\lambda x)\bigg|_0^\infty=1](https://img.qammunity.org/2020/formulas/mathematics/college/v1p6zaf8mtdei3kqw9yadwcn6fasv5rm8t.png)
and so
is indeed a PDF.
b. Let
be a random variable with
as its PDF. Then
![\mu=E[X]=\displaystyle\int_(-\infty)^\infty xf(x)\,\mathrm dx=\frac\lambda2\int_(-\infty)^\infty xe^(-\lambda|x|)\,\mathrm dx](https://img.qammunity.org/2020/formulas/mathematics/college/dqeu6xwu0pb257s8ucdbjpaduecldp0jj0.png)
The integrand is odd, so the integral vanishes and the mean is
.
The variance of
is
![\sigma^2=E[(X-E[X])^2]=E[X^2]-E[X]^2](https://img.qammunity.org/2020/formulas/mathematics/college/44puiate54i6m50hu47ajhic7cc0dl8wej.png)
The second moment is
![E[X^2]=\displaystyle\int_(-\infty)^\infty x^2f(x)\,\mathrm dx](https://img.qammunity.org/2020/formulas/mathematics/college/2cyd8xqclxulnu5b2og3d5750x2czuz2lq.png)
This integrand is even, so
![E[X^2]=\displaystyle2\int_0^\infty x^2f(x)\,\mathrm dx=\lambda\int_0^\infty x^2e^(-\lambda x)\,\mathrm dx](https://img.qammunity.org/2020/formulas/mathematics/college/2jku6sxjaprmqqf46apbg0zo7y87plwkaw.png)
Integrate by parts, taking
![u=x^2\implies\mathrm du=2x\,\mathrm dx](https://img.qammunity.org/2020/formulas/mathematics/college/o6xwb3h0n1snde9wokiaki8lzdddvhuclk.png)
![\mathrm dv=e^(-\lambda x)\,\mathrm dx\implies v=-\frac{e^(-\lambda x)}\lambda](https://img.qammunity.org/2020/formulas/mathematics/college/3sjzba1ccg0f2jk7fbvvuq25wivxpnck72.png)
so that
![\displaystyle E[X^2]=\lambda\left(-\frac{x^2e^(-\lambda x)}\lambda\bigg|_0^\infty+2\int_0^\infty\frac{xe^(-\lambda x)}\lambda\,\mathrm dx\right)=2\int_0^\infty xe^(-\lambda x)\,\mathrm dx](https://img.qammunity.org/2020/formulas/mathematics/college/78u676jouvoks9r2rq57ub4blfmd99axr7.png)
Integrate by parts again, this time with
![u=x\implies\mathrm du=\mathrm dx](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uanc9fr61zcgwfaplsr5vab70mmopzxyz2.png)
![\mathrm dv=e^(-\lambda x)\,\mathrm dx\implies v=-\frac{e^(-\lambda x)}\lambda](https://img.qammunity.org/2020/formulas/mathematics/college/3sjzba1ccg0f2jk7fbvvuq25wivxpnck72.png)
![\displaystyle E[X^2]=2\left(-\frac{xe^(-\lambda x)}\lambda\bigg|_0^\infty+\int_0^\infty\frac{e^(-\lambda x)}\lambda\,\mathrm dx\right)=\frac2\lambda\int_0^\infty e^(-\lambda x)\,\mathrm dx=-\frac2{\lambda^2}e^(-\lambda x)\bigg|_0^\infty=\frac2{\lambda^2}](https://img.qammunity.org/2020/formulas/mathematics/college/gxv3gjduz8jpwwv3vf5u8qzbm2iij14h3z.png)
and so the variance is
.