120k views
4 votes
Copper and aluminum are being considered for a high-voltage transmission line that must carry a current of 56.4 A. The resistance per unit length is to be 0.181 Ω/km. The densities of copper and aluminum are 8960 and 2600 kg/m3, respectively. Compute (a) the magnitude J of the current density and (b) the mass per unit length λ for a copper cable and (c) J and (d) λ for an aluminum cable.

1 Answer

6 votes

Answer:

a)
J=6.04* 10^5\ A/m^2

b)λ=0.83 kg/m

c)
J=3.71* 10^5\ A/m^2

d) λ=0.39 kg/m

Step-by-step explanation:

Given that

I= 56.4 A

R= 0.181 Ω/km

Copper :

d=8960 kg/m³


\rho = 1.69* 10^(-8)\ ohm.m

Aluminium :

d=2600 kg/m³


\rho = 2.75* 10^(-8)\ ohm.m

We know that

E= V/L

V= I R

J= E/ρ


J=(IR)/(L\rho)

For copper:


J=(IR)/(L\rho)


J=(56.4* 0.181* 10^(-3))/(1.69* 10^(-8))


J=6.04* 10^5\ A/m^2

Mass per unit length λ


\lambda =(\rho d)/((R)/(L))


\lambda =(1.69* 10^(-8)* 8960 )/(0.181* 10^(-3))

λ=0.83 kg/m

For aluminum :


J=(IR)/(L\rho)


J=(56.4* 0.181* 10^(-3))/(2.75* 10^(-8))


J=3.71* 10^5\ A/m^2

Mass per unit length λ


\lambda =(\rho d)/((R)/(L))


\lambda =( 2.75* 10^(-8)* 2600  )/(0.181* 10^(-3))

λ=0.39 kg/m

User MagnusMTB
by
5.5k points