105k views
11 votes
(x+1/x-1 - x-1/x+1 - 4x/x^2 +1) + 4x/x^4-1​

User Adam Musa
by
7.5k points

1 Answer

10 votes

Answer:


(12x)/(x^4-1)

Step-by-step explanation:

Given


((x+1)/(x-1) - (x-1)/(x+1) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)

Required

Solve:

Take L.C.M of the first two fractions


(((x+1)(x+1)-(x-1)(x-1))/((x-1)(x+1)) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)


(((x+1)(x+1)-(x-1)(x-1))/(x^2-1) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)


((x^2+2x+1-(x^2-2x+1))/(x^2-1) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)


((x^2+2x+1-x^2+2x-1)/(x^2-1) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)

Collect Like Terms


((x^2-x^2+2x+2x+1-1)/(x^2-1) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)


((4x)/(x^2-1) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)

Solve the expression in bracket


((4x(x^2+1) - 4x(x^2-1))/((x^2-1)(x^2+1)) ) + (4x)/(x^4 - 1)


((4x(x^2+1) - 4x(x^2-1))/(x^4-1) ) + (4x)/(x^4 - 1)


((4x^3+4x - 4x^3+4x))/(x^4-1) ) + (4x)/(x^4 - 1)


((4x^3- 4x^3+4x +4x))/(x^4-1) ) + (4x)/(x^4 - 1)


(8x)/(x^4-1) + (4x)/(x^4 - 1)

Take LCM


(8x+4x)/(x^4-1)


(12x)/(x^4-1)

The expression can not be further simplified

User Ukasha
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.