105k views
11 votes
(x+1/x-1 - x-1/x+1 - 4x/x^2 +1) + 4x/x^4-1​

User Adam Musa
by
3.8k points

1 Answer

10 votes

Answer:


(12x)/(x^4-1)

Step-by-step explanation:

Given


((x+1)/(x-1) - (x-1)/(x+1) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)

Required

Solve:

Take L.C.M of the first two fractions


(((x+1)(x+1)-(x-1)(x-1))/((x-1)(x+1)) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)


(((x+1)(x+1)-(x-1)(x-1))/(x^2-1) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)


((x^2+2x+1-(x^2-2x+1))/(x^2-1) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)


((x^2+2x+1-x^2+2x-1)/(x^2-1) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)

Collect Like Terms


((x^2-x^2+2x+2x+1-1)/(x^2-1) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)


((4x)/(x^2-1) - (4x)/(x^2 + 1)) + (4x)/(x^4 - 1)

Solve the expression in bracket


((4x(x^2+1) - 4x(x^2-1))/((x^2-1)(x^2+1)) ) + (4x)/(x^4 - 1)


((4x(x^2+1) - 4x(x^2-1))/(x^4-1) ) + (4x)/(x^4 - 1)


((4x^3+4x - 4x^3+4x))/(x^4-1) ) + (4x)/(x^4 - 1)


((4x^3- 4x^3+4x +4x))/(x^4-1) ) + (4x)/(x^4 - 1)


(8x)/(x^4-1) + (4x)/(x^4 - 1)

Take LCM


(8x+4x)/(x^4-1)


(12x)/(x^4-1)

The expression can not be further simplified

User Ukasha
by
4.8k points