Answer:
1) 1.808 *10^8 vacancies per cm^3
2) 101,64ÂșC
Step-by-step explanation:
You can use the following equation relating the number of vacancies with the energy required to produce them and the temperature:
![n_(v) =Ne^{(-E)/(K_(b)*T) }](https://img.qammunity.org/2020/formulas/chemistry/high-school/5f4iz6yfcdb15cnlj2468nnz2kisfs45kx.png)
Where N is the number atoms per unit of volume, you can calculate this number with the density of copper:
![8.96 (g)/(cm^(3) ) *(1 mole copper)/(63.54 g ) *(6.023*10^(23) atoms )/(1 mole) = 8.47*10^(22)atoms](https://img.qammunity.org/2020/formulas/chemistry/high-school/lcua4xaknqaa0b8uzmz1qi7485f7yomwep.png)
And you can substitute all values in the equation:
![n_(v) =8.47*10^(22)atoms*e^{(-20 000 cal)/(6.023*10^(23)mol^(-1)*3.297*10^(-24)cal*k^(-1)*298.15K) }=1.808*10^(8)atoms](https://img.qammunity.org/2020/formulas/chemistry/high-school/80qknrdf9d8rruvf89y66d6wao5nn379t4.png)
Now you solve for temperature and and use n as 1000 times the value of before:
![T=(-E)/(k_(b)ln(n/N)) =(-(2*10^(4)cal))/((3.297*10^(24)calk^(-1))*ln(1.8083*10^(11)/8.47*10^(22))) =374.79 K = 101.64 C](https://img.qammunity.org/2020/formulas/chemistry/high-school/qc12bestwuzyqxv35xtg6vytqqfziddmgy.png)