Given:
A piecewise function
![f(x)=\begin{cases}3 &,x<0 \\ x^2+2 &,0\leq x<2 \\ (1)/(2)x+5 &,x\geq 2 \end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/hyx223violex3qtnnqv2rqpgfv2tfx0ytc.png)
To find:
The range of the function.
Solution:
Range is the set of output values.
For
, the function is
...(i)
For
, the function is
.
![0\leq x<2](https://img.qammunity.org/2022/formulas/mathematics/college/8j9n7s3m3zl7ankwxpi7m3xqrd90wjf32j.png)
Squaring each side.
![0^2\leq x^2<2^2](https://img.qammunity.org/2022/formulas/mathematics/college/pr3cv4pflwjwzamv8negrlllftcg2geyhb.png)
Adding 2 on each side.
![0+2\leq x^2+2<4+2](https://img.qammunity.org/2022/formulas/mathematics/college/3uvjqlpu8mzqvohosrwlxpj701vf9vmyip.png)
...(ii)
For
, the function is
.
![x\geq 2](https://img.qammunity.org/2022/formulas/mathematics/college/jwpeqwi21w3bp954hjtdcg83jnhf0iyr67.png)
Divide both sides by 2.
![(1)/(2)x\geq 1](https://img.qammunity.org/2022/formulas/mathematics/college/xtbk3ceq03n2nl9kjsdwomj3bxtmy269pf.png)
Adding 5 on each side.
![(1)/(2)x+5\geq 1+5](https://img.qammunity.org/2022/formulas/mathematics/college/zuuofgp8kt5jbt2re43d7i2078uyld37td.png)
...(iii)
From (i), (ii) and (iii), it is clear that the values of f(x) lies in the interval [2,∞).
So, the range of the given function is [2,∞).
Therefore, the correct option is b.