27.8k views
1 vote
Find the exact roots of x²-2x-10=4x​

1 Answer

7 votes

Answer:


x = 3 - √(19) \: \: or \: \: x = 3 + √(19)

Explanation:

The given equation is


{x}^(2) - 2x - 10 = 4x

We group the linear terms to get:


{x}^(2) - 2x - 4x - 10 = 0


{x}^(2) - 6x - 10 = 0

We compare to


a {x}^(2) + bx + c = 0

This means

a=1, b=-6 and c=-10

We plug in the values into the quadratic formula:


x = \frac{ - b \pm \sqrt{ {b}^(2) - 4ac} }{2a}

This gives us


x = \frac{ - -6 \pm \sqrt{ {( - 6)}^(2) - 4 * 1 * - 10 } }{2 * 1}


x = ( 6 \pm √( 36 + 40 ) )/(2)


x = ( 6 \pm √(76 ) )/(2)


x = ( - 6 \pm 2√(19) )/(2)


x = 3 \pm √(19)

The solutions are


x =3 + √(19)

or


x = 3 - √(19)

User Paulo Scardine
by
6.0k points