Answer:
![x=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jmja0xwsmt4jtrinnsn2lhtcie4am0nxwn.png)
Explanation:
Let
be the expression for the linear function k(x), where m is the slope of the function and this function passes through the point (1,8).
Thus,
and the function expression is
![k(x)=-4x+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ec6vw4j1fz6hd946xosuxwyjjncqpu0gi9.png)
If the graph of the function passes through the point (1,8), then its coordinates satisfy the function expression. Substitute them:
![8=-4\cdot 1+b\\ \\8=-4+b\\ \\b=8-(-4)\\ \\b=12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qyp33asr8mlj1pisngdm5os18bnx7urk1o.png)
Hence,
![k(x)=-4x+12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4rwo26c7c47wbh08v8suig7nor9v1s6lxm.png)
The graph of this function intersects the x-axis at k(x)=0, then
![-4x+12=0\\ \\-4x=-12\\ \\x=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/52c959yyml8etjo6dmm4jfb9otlbwkaq59.png)
Zero of the function is x=3