Answer:
(ACD'+BE)
Step-by-step explanation:
(A+B)(C+B)(D'+B)(ACD'+E)
Product of (A+B)(C+B)
(A+B)(C+B)=AC+AB+BC+B^2 = AC+B(A+C+B)=AC+B
Product of (D'+B)(ACD'+E) with AC+B
(AC+B)(D'+B)(ACD'+E)
(AC+B)(D'+B)=ACD' + ACB +BD +B = ACD'+B(AC+D+1)=ACD'+B
Then we get:
(ACD'+B)(ACD'+E) = ACD'+ACD'E+ACD'B+BE
ACD'(1+E+B)+BE =ACD'+BE