Answer:
We conclude that the midpoint of the segment is:
Hence, option D is correct.
Explanation:
Given the points
Finding the midpoint of the segment using the formula
![\mathrm{Midpoint\:of\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \left((x_2+x_1)/(2),\:\:(y_2+y_1)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/arkat8hy5vnzryka9t7d95c2y05qflma7j.png)
![\left(x_1,\:y_1\right)=\left(-3,\:4\right),\:\left(x_2,\:y_2\right)=\left(-6,\:-1\right)](https://img.qammunity.org/2022/formulas/mathematics/college/x3rztf5hiajrqytbgr8989ra90l5b8lexl.png)
so
![=\left((-6-3)/(2),\:(-1+4)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/college/pwe9eq93gohpmp10gj93dr004up3i6uy0b.png)
![=\left(-(9)/(2),\:(3)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/college/gewdqznz9hpllmmqcyuibah4gvdmq4m8zv.png)
Therefore, we conclude that the midpoint of the segment is:
Hence, option D is correct.