227k views
14 votes
Simplify the following expression as much as you can use exponential properties. (6^-2)(3^-3)(3*6)^4

User Radtek
by
8.4k points

1 Answer

9 votes

Answer:

Simplifying the expression
(6^(-2))(3^(-3))(3*6)^4 we get
\mathbf{108}

Explanation:

We need to simplify the expression
(6^(-2))(3^(-3))(3*6)^4

Solving:


(6^(-2))(3^(-3))(3*6)^4

Applying exponent rule:
a^(-m)=(1)/(a^m)


=(1)/((6^(2)))(1)/((3^(3)))(18)^4\\=((18)^4)/(6^(2)\:.\:3^(3)) \\

Factors of
18=2* 3* 3=2*3^2

Factors of
6=2* 3

Replacing terms with factors


=((2*3^2)^4)/((2* 3)^(2)\:.\:3^(3)) \\=((2)^4*(3^2)^4)/((2)^2* (3)^(2)\:.\:3^(3)) \\

Using exponent rule:
(a^m)^n=a^(m* n)


=((2)^4*(3)^8)/((2)^2* (3)^(2)\:.\:3^(3)) \\=(2^4* 3^8)/(2^2* 3^(2)\:.\:3^(3))

Using exponent rule:
a^m.a^n=a^(m+n)


=(2^4* 3^8)/(2^2* 3^(2+3))\\=(2^4* 3^8)/(2^2* 3^(5))

Now using exponent rule:
(a^m)/(a^n)=a^(m-n)


=2^(4-2)* 3^(8-5)\\=2^(2)* 3^(3)\\=4* 27\\=108

So, simplifying the expression
(6^(-2))(3^(-3))(3*6)^4 we get
\mathbf{108}

User ClementWalter
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories